銅靈 發(fā)自 凹非寺
量子位 出品 | 公眾號(hào) QbitAI
暑假即將到來,不用來充電學(xué)習(xí)豈不是虧大了。
有這么一份干貨,匯集了機(jī)器學(xué)習(xí)架構(gòu)和模型的經(jīng)典知識(shí)點(diǎn),還有各種TensorFlow和PyTorch的Jupyter Notebook筆記資源,地址都在,無(wú)需等待即可取用。
除了取用方便,這份名為Deep Learning Models的資源還尤其全面。
針對(duì)每個(gè)細(xì)分知識(shí)點(diǎn)的介紹還尤其全面的,比如在卷積神經(jīng)網(wǎng)絡(luò)部分,作者就由淺及深分別介紹了AlexNet、VGG、ResNet等。
干貨發(fā)布后,在GitHub短時(shí)間獲得了6000+顆星星,迅速聚集起大量人氣。
圖靈獎(jiǎng)得主、AI大牛Yann LeCun也強(qiáng)烈推薦,夸贊其為一份不錯(cuò)的PyTorch和TensorFlow Jupyter筆記本推薦!
這份資源的作者來頭也不小,他是威斯康星大學(xué)麥迪遜分校的助理教授Sebastian Raschka,此前還編寫過Python Machine Learning一書。
話不多說現(xiàn)在進(jìn)入干貨時(shí)間,好東西太多篇幅較長(zhǎng),記得先碼后看!
原資源地址:
https://github.com/rasbt/deeplearning-models
干貨來也
1、多層感知機(jī)
多層感知機(jī)簡(jiǎn)稱MLP,是一個(gè)打基礎(chǔ)的知識(shí)點(diǎn):
多層感知機(jī):
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb
增加了Dropout部分的多層感知機(jī):
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb
具備批標(biāo)準(zhǔn)化的多層感知機(jī):
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb
從零開始了解多層感知機(jī)與反向傳播:
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb
2、卷積神經(jīng)網(wǎng)絡(luò)
在卷積神經(jīng)網(wǎng)絡(luò)這一部分,細(xì)碎的知識(shí)點(diǎn)很多,包含基礎(chǔ)概念、全卷積網(wǎng)絡(luò)、AlexNet、VGG等多個(gè)內(nèi)容。來看干貨:
卷積神經(jīng)網(wǎng)絡(luò)基礎(chǔ)入門:
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-basic.ipynb
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb
卷積神經(jīng)網(wǎng)絡(luò)的初始化:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb
想用等效卷積層替代全連接的話看看下面這個(gè):
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb
全卷積神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)在這里:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb
Alexnet網(wǎng)絡(luò)模型在CIFAR-10數(shù)據(jù)集上的實(shí)現(xiàn):
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb
關(guān)于VGG模型,你可能需要了解VGG-16架構(gòu):
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb
在CelebA上訓(xùn)練的VGG-16性別分類器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb
VGG19網(wǎng)絡(luò)架構(gòu):
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb
關(guān)于2015年被提出的經(jīng)典CNN模型ResNet,最厲害的資源也在這了。
比如ResNet和殘差塊:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb
用MNIST數(shù)據(jù)集訓(xùn)練的ResNet-18數(shù)字分類器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb
用人臉屬性數(shù)據(jù)集CelebA訓(xùn)練的ResNet-18性別分類器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb
在MNIST上訓(xùn)練的ResNet-34:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb
在CelebA上訓(xùn)練ResNet-34性別分類器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb
在MNIST上訓(xùn)練的ResNet-50數(shù)字分類器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb
在CelebA上訓(xùn)練ResNet-50性別分類器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb
在CelebA上訓(xùn)練ResNet-101性別分類器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb
在CelebA上訓(xùn)練ResNet-152性別分類器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb
CIFAR-10分類器中的網(wǎng)絡(luò):
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb
3、指標(biāo)學(xué)習(xí)
具有多層感知機(jī)的孿生網(wǎng)絡(luò):
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb
4、自編碼器
在自編碼器這一部分,同樣有很多細(xì)分類別需要學(xué)習(xí),注意留出充足時(shí)間學(xué)習(xí)這一內(nèi)容。
自編碼器的種類很多,比如全連接自編碼器:
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-basic.ipynb
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb
還有卷積自編碼器。比如這個(gè)反卷積(轉(zhuǎn)置卷積)卷積自編碼器:
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb
沒有進(jìn)行池化的反卷積自編碼器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv-nopool.ipynb
有最近鄰插值的卷積自編碼器:
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-conv-nneighbor.ipynb
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb
在CelebA上訓(xùn)練過的有最近鄰插值的卷積自編碼器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb
在谷歌涂鴉數(shù)據(jù)集Quickdraw上訓(xùn)練過的有最近鄰插值的卷積自編碼器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb
變分自編碼器也是自編碼器中的重要一類:
變分自編碼器基礎(chǔ)介紹:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb
卷積變分自編碼器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb
最后,還有條件變分自編碼器也需要關(guān)注。比如在重建損失中有標(biāo)簽的:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb
沒有標(biāo)簽的:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb
有標(biāo)簽的條件變分自編碼器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb
沒有標(biāo)簽的條件變分自編碼器:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb
5、生成對(duì)抗網(wǎng)絡(luò)(GAN)
在MNIST上的全連接GAN:
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb
在MNIST上訓(xùn)練的條件GAN:
TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb
用Label Smoothing方法優(yōu)化過的條件GAN:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb
6、循環(huán)神經(jīng)網(wǎng)絡(luò)
針對(duì)多對(duì)一的情緒分析和分類問題中,包括簡(jiǎn)單單層RNN:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb
壓縮序列的簡(jiǎn)單單層RNN:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb
RNN和LSTM技術(shù):
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb
基于GloVe預(yù)訓(xùn)練詞向量的有LSTM核的RNN:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb-glove.ipynb
GRU核的RNN:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb
多層雙向RNN:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb
一對(duì)多/序列到序列的生成新文本的字符RNN:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb
7、有序回歸
針對(duì)不同場(chǎng)景,有三類有序回歸干貨:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb
8、方法和技巧
關(guān)于周期性學(xué)習(xí)速率,這里也有一份小技巧:
PyTorch版
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb
9、PyTorch Workflow和機(jī)制
用自定義數(shù)據(jù)集加載PyTorch,這里也有一些攻略:
比如用CelebA中的人臉圖像:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb
比如用街景數(shù)據(jù)集:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-svhn.ipynb
比如用Quickdraw:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb
在訓(xùn)練和預(yù)處理環(huán)節(jié),標(biāo)準(zhǔn)化圖像可參考:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb
圖像信息樣本:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb
有文本文檔的Char-RNN :
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb
在CelebA上訓(xùn)練的VGG-16性別分類器的并行計(jì)算等:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb
10、TensorFlow Workflow與機(jī)制
這是這份干貨中的最后一個(gè)大分類,包含自定義數(shù)據(jù)集、訓(xùn)練和預(yù)處理兩大部分。
內(nèi)容包括:
將NumPy NPZ用于小批量訓(xùn)練圖像數(shù)據(jù)集
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb
用HDF5文件存儲(chǔ)圖像數(shù)據(jù)集,用于小規(guī)模訓(xùn)練
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb
用輸入pipeline從TFRecords文件中讀取數(shù)據(jù)
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb
TensorFlow數(shù)據(jù)集API
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/dataset-api.ipynb
如果需要從TensorFlow Checkpoint文件和NumPy NPZ Archive中存儲(chǔ)和加載訓(xùn)練模型,可移步:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb
11、傳統(tǒng)機(jī)器學(xué)習(xí)
最后,如果你是從零開始入門,可以從傳統(tǒng)機(jī)器學(xué)習(xí)看起。包括感知機(jī)、邏輯回歸和Softmax回歸等。
感知機(jī)部分TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb
PyTorch版筆記
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb
邏輯回歸部分也是一樣:
邏輯回歸部分部分TensorFlow版Jupyter Notebooks
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb
PyTorch版筆記
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb
Softmax回歸,也稱為多項(xiàng)邏輯回歸:
Softmax回歸部分部分TensorFlow版Jupyter Notebook
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb
PyTorch版筆記
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb
傳送門
這份干貨滿滿的資源到這里就結(jié)束了,再次放上原文傳送門:
https://github.com/rasbt/deeplearning-models
超強(qiáng)干貨,記得收藏~
— 完 —
誠(chéng)摯招聘
量子位正在招募編輯/記者,工作地點(diǎn)在北京中關(guān)村。期待有才氣、有熱情的同學(xué)加入我們!相關(guān)細(xì)節(jié),請(qǐng)?jiān)诹孔游还娞?hào)(QbitAI)對(duì)話界面,回復(fù)“招聘”兩個(gè)字。
量子位 QbitAI · 頭條號(hào)簽約作者
?’?’ ? 追蹤AI技術(shù)和產(chǎn)品新動(dòng)態(tài)